
A Unification of Artificial Potential Function Guidance and Optimal
Trajectory Planning

Carl Glen Henshaw
Naval Center for Space Technology

U.S. Naval Research Laboratory
ghenshaw@space.nrl.navy.mil

(202) 767-1196

January 10, 2005

Artificial potential function guidance (APFG) has been widely and successfully used to solve motion planning problems
across a variety of domains. APFG is popular, in large part, due to its simplicity and speed. However, APFG is known
to have several limitations. Notably, it may not find a free trajectory even where one exists, and in most cases APFG
trajectories are highly suboptimal. In contrast, fueled by the development of new numerical optimization algorithms,
there has been considerable recent interest in the use of a variety of optimal trajectory planners which do not exhibit these
limitations. These algorithms hinge on finding a trajectory which minimizes a given cost functional. When successful these
algorithms find very high–quality trajectories, but when applied to nonlinear systems and cluttered environments, they often
run too slowly for use in real–time systems, and providing rigorous convergence guarantees for such algorithms may be
difficult. This paper demonstrates an apparently unappreciated relationship between APFG and a form of optimal planning
called receding horizon planning. This understanding may be used to derive trajectory planning algorithms which fit into
an anytime planning framework, which may allow high–quality trajectories to be calculated with guaranteed real–time
performance. Preliminary results for a receding horizon planner applied to planar holonomic robotic navigation problem
and to a realistic orbital robotic arm grapple maneuver are presented.

1 Introduction

A reliable, high quality, real–time motion planning algorithm is one of the holy grails of robotics research. Motion planning
is necessary for robots to find their way around their environments while limiting the amount of time or fuel required to
perform their required tasks. In the case of robots which operate in cluttered environments, motion planning is necessary
to allow the robot to navigate while avoiding collisions with obstacles or other robots. In some cases, such as with be-
havioristic systems, the division between trajectory planning, lower level control algorithms, and higher level goal seeking
algorithms may be quite blurred. With most successfully fielded systems, however, the trajectory planner constitutes a dis-
tinct algorithm, and much effort has gone into developing such algorithms which are fast, complete, correct, and which find
time– or length–optimal trajectories. An additional problem has been to ensure that the resulting trajectories are feasible,
that is, that they satisfy any dynamic and kinematic constraints for the system in question.

Artificial Potential Function Guidance (APFG) is among the most popular robotic trajectory planners. APFG planners
are based on the design of a potential function which has a global minimum centered at the goal and local maxima over
obstacles [6], [7], [17]. The trajectory is then generated by performing gradient descent on the potential function. APFG
planners are simple to design, execute very quickly, and are applicable to a wide variety of problem domains. However,
APFG planners have several known limitations. Chief among these is that it is difficult to design a potential function that
is free of local minima, which can cause the gradient descent step to terminate before reaching the goal [11, p. 296].
Another limitation is that there appears to be no straightforward way of including optimization criteria in such a planner;
as a consequence the resulting trajectories may be highly suboptimal in terms of fuel use, path length, or other quantities
of interest. Finally, enforcing dynamic and/or kinematic constraints using potential functions may be problematic.

Recently, optimal trajectory planning has seen increasing use in robotics [21], [16], [23], [10], [14]. Optimal trajectory
planning entails the design of a cost functional, a mathematical expression that “grades” trajectories on the basis of fuel use,

1

time, path length, or any other mathematically quantifiable term of interest to the designer. One of a variety of optimization
techniques is then applied to determine the trajectory which minimizes the cost functional; the resulting trajectory is optimal
in terms of the specified quantities of interest. In addition, it is easy to incorporate dynamic constraints, thruster constraints,
and very complex boundary value constraints into an optimal trajectory planner. Unfortunately, though, optimal trajectory
planners are often computationally intensive, especially when used for obstacle avoidance problems for a system with
nonlinear kinematics and/or dynamics, which necessitates the use of a nonlinear numerical optimization algorithm [5]. As
a consequence their utility as real–time trajectory planners may be limited.

In order to overcome the computational challenges associated with optimal trajectory planning, the use of receding
horizon control has recently been suggested [1]. A receding horizon planner is essentially an optimal planner except that
the cost functional is formulated over the fixed time period(t, t + h) instead of(t0, tf), where it is assumed thath is much
smaller thantf − t0. A step sizeδ < h is chosen, and the trajectory fromt to t+ δ is traversed; simultaneously, the planner
“replans” by generating a trajectory fromt+δ to t+h+δ. Because fewer computations are usually required to minimize a
cost functional as the planning horizon becomes smaller, receding horizon planners generally execute much more quickly
than end-to-end optimal trajectory planners while retaining many of their desirable aspects. In addition, receding horizon
planners can respond more quickly to unpredicted obstacles or other environmental factors that may not be known with
precision att0. However, because the convergence qualities of nonlinear minimization algorithms are notoriously difficult
to analyze, even a receding horizon planner may not always result in real–time performance.

The primary focus of this paper is the description of a technique which may allow the development of receding hori-
zon planners with real–time performance guarantees for virtually any physical system of interest, including systems with
nonlinear dynamics and kinematics. This technique is a straightforward outgrowth of the realization that receding horizon
planning becomes identical to APFG as the planning horizonh approaches zero. The paper is organized as follows: Section
2 describes APFG in detail. Section 3 describes both “standard” optimal planning and receding horizon planning. Section
4 demonstrates the relationship between APFG and optimal planning. Section 5 discusses how this relationship may be
utilized to fit receding horizon planning into an anytime planning framework, where a minimally acceptable trajectory can
be generated within a known short period of time and then improved upon for however much time is available. Section 6
shows the results for a receding horizon planner for a simple planar trajectory planning problem and a more realistic orbital
dexterous robotic arm grapple. Finally, Section 7 presents conclusions and topics for future work.

2 Artificial Potential Function Guidance

APFG planners first achieved popularity with the dissertation of Khatib [6], who suggested them as a collision avoidance
algorithm for articulated robot arms. In the simplest formulation, an APFG planner is based on a potential function which
consists of attractive “bowl–shaped” term centered on the goal position and repulsive “hump–shaped” terms over each of
the environmental obstacles:

G(x) = A(x,xd) + β
n∑

j=0

R(dist(x, cj)) (1)

whereA(·) is the attractive term,R(·) is the repulsive term,x is the system position vector,xd is the goal position, andcj

represents the set of points occupied by obstaclej. Typically,A(·) is quadratic,

A(x,xd) = ‖x− xd‖2, (2)

dist(x(t), cj) represents the distance betweenx(t) and the boundary ofcj , andR(·) is a radial function such as the inverse
of the distance from the robot to the obstacle

R(x, cj) = 1/dist(x(t), cj)

or a Gaussian

R(x, cj) =
1

σ
√

2π
e
−dist(x(t),cj)2

(2σ)2 .

A sequence of waypoints fromx to xd is calculated by performing gradient descent on the potential function:

xi+1 = xi − γ
∂G(x)

∂x

∣∣∣∣
xi

2

where, typically,γ � 1. As i → ∞, it is expected thatxi → xd. If β is sufficiently large andγ is sufficiently small, it
can be guaranteed that the resulting trajectory will be free of collisions [7]. Also, note that the computational complexity
required to calculate the gradient∂G

∂x is only O(n) in the dimensionality of the trajectory space and in the number of
obstacles (assuming anO(n) distance calculation routine). Therefore, it is usually possible to determine hard real–time
performance guarantees for an APFG planner.

This formulation has several well–known limitations. One major problem with the naive formulation is thatG(·) may
have local minima in which the gradient descent algorithm can become stuck, leading to a failure of the waypointsxi to
converge to the goal positionxd. This typically occurs when two or more obstacles are close to each other. Considerable
effort has been devoted to finding potential functions which are free of extraneous local minimum. Koditschek et al [17]
were the first to generate such a potential function. Several different formulations have since been proposed [22], [8].
Notably, most of these formulations require the potential function to be calculated a priori over the entire domain of
interest [2]. This calculation may be quite complex, which somewhat diminishes the simplicity that is the appeal of the
naive formulation, and also reduces the calculation speed of the algorithm.

Since APFG trajectories consist of waypoints, the trajectory must be parameterized so that it is feasible. Interpreted in
the simplest manner, each successive waypoint is reached after a fixedδt, so that atti, x = xi. The path taken between
each waypoint is often assumed to be linear, so that the entire trajectory is piecewise linear, and the velocity achieved at
each waypoint is often defined implicitly by whatever lower level control algorithm is used. However, such a scheme may
yield an unfeasible trajectory. For instance, when using a quadratic attractive potential such as Equation 2, in the absence
of obstacles the gradient becomes steeper as the distance from the goal position increases. Therefore, if the robot begins
at rest (or, indeed, with any velocity vector other than one that happens to point directly at the waypoint), a large initial
velocity spike will result which may be higher than the system actuators can accommodate. In addition, many systems of
interest, such as aircraft or spacecraft, are unable to follow piecewise linear trajectories. In order to follow a piecewise
trajectory most other systems would have to stop completely at each waypoint, which is clearly undesirable from both a
fuel use and arrival time standpoint.

To overcome these problems the trajectory must be intelligently parameterized somehow. Parameterization schemes
may be as simple as varying the required arrival time and velocity at each waypoint in order to keep the actuation require-
ments within acceptable limits, or as complex as using the waypoints as the initial trajectory for a trajectory optimization
scheme (see below). It may also be necessary to “adjust” the shape of the potential function to ensure that requirements
such as minimum turn radii or (for an aircraft) maximum rate of climb are met. Formulations have also been proposed
where, instead of waypoints, the APFG planner returns a control inputu. These formulations are then guaranteed to satisfy
system dynamic constraints; thruster constraints are more problematic, but formulations taking them into account have also
been proposed [18], [12], [13]. Unlike the waypoint formulation, however, considerable care must be taken to guarantee
that the resulting trajectories are collision free.

A limitation which is less well recognized but just as problematic is that the trajectories computed from APFG planners
are generally not optimal in any sense. For a simple system like a wheeled robot this is not usually a problem; but for
many types of systems this limitation may eliminate APFG as a viable option. For an orbiting spacecraft, for instance,
minimizing fuel use, or at least keeping fuel use low in some sense, is often very important. Similarly, for a robot arm it
is often desirable to minimize the joint velocities, and for an aircraft minimizing time of flight or distance traveled may be
important. There do not appear to be any extensions to APFG in the literature which attempt to solve this problem.

3 Optimal Trajectory Planning

The basic idea behind optimal trajectory planning is to use one of a variety of numerical methods to find a trajectory which
minimizes a cost functional [9], generically formulated as

J [x(t), t] = F (x(tf), ẋ(tf), tf) +
∫ tf

t0

G(x(t), ẋ(t), t) dt (3)

There is usually at least one hard constraint, requiring thatx(t0) = x0, instituted on admittable solutions. The other
endpoint may also be handled as a hard constraint, requiring thatx(tf) = xf . Alternatively,F (·) may include a term
penalizing the distance fromx(tf) to xf [9, p. 42–45] such as:

F (x(tf), tf) = · · ·+ α ‖x(tf)− xf‖2 + · · ·

3

This is referred to as a soft constraint. Additionally, environmental obstacles may be handled via hard constraints, by
requiring that

x(t) /∈
⋃

cj ∀ t ∈ [t0, tf]

or via a soft contraint by adding a term toG(·) which penalizes obstacle clearance distance, such as

G(x(t), ẋ(t), t) = · · ·+ β
n∑

j=1

R(dist(x(t), cj)) + · · ·

G(·) may also contain terms which penalize fuel use, path length, or arrival time, or virtually any other mathematically
expressible quantity. The optimal trajectory will then “trade off” each of the penalized terms to determine a trajectory
which results in the lowest overall score.

The problem of finding the trajectory which minimizes the cost functional subject to the hard constraints may be solved
in one of several ways. The classic approach is to augmentG(·) using Lagrange multipliers [9, Chapter 5]:

Ga(x(t), ẋ(t), t) = G(x(t), ẋ(t), t) + λT (t)f(x(t), ẋ(t), t)

where theẋ(t) = f(x(t), ẋ(t), t) term defines the system dynamics and the vector of time–varying Lagrange multipliers
λ(t) is called the costate. Then it can be shown that the solution to the differential equations

λ̇(t) = −∂Ga(x(t), ẋ(t), t)
∂x(t)

(4)

ẋ(t) =
∂Ga(x(t), ẋ(t), t)

∂λ(t)
= f(x(t), ẋ(t), t)

subject to suitably chosen boundary constraints minimizes the cost functionalJ(·). This technique is known as the indirect
approach. This approach has the advantage that is easy to derive Euler–Lagrange equations for systems with arbitrary
dynamics and actuator constraints. It is easy to incorporate thrusters with limited force output or even thrusters with
discrete output levels, for instance. Nonholonomic systems may also be treated.

The particular boundary constraints depend on the particular problem being solved [9, pp. 189-198]; in the simplest
case, whereF (·) = 0 and bothx0 andxf are considered hard constraints, the boundary conditions are

x(t0) = x0 (5)

x(tf) = xf .

If xf is a soft constraint or there are other terms inF (·), then the boundary conditions become more complex. For instance,
if xf is a soft constraint, such asF (x(tf), ẋ(t), t) = α ‖x(tf)− xf‖2, then the necessary boundary conditions are

x(t0) = x0 (6)

−λ(tf) =
∂F

∂x
(x(tf), ẋ(t), t) = 2α(x(tf)− xf)

Other hard constraints may be incorporated by adding additional Lagrange multipliers to Equation 4. It is also possible to
choose the optimal arrival timetf . In all cases, however, the boundary conditions are split, that is, the entire state vector
[x(t), λ(t)]T is not known at eithert0 or tf ; instead, parts of the required state vector are known att0 and parts attf .
Consequently, the Euler–Lagrange equations cannot be solved merely by integrating them forward (or backward) in time;
instead, fairly complex iterative numerical algorithms must be utilized to locate a solution which satisfies the differential
equations and the boundary conditions.

Recently, an alternative approach to solving the optimal motion planning problem has gained popularity. In this ap-
proach, one attempts to approximate the trajectory which minimizesJ [·] using a spline or another approximation tech-
nique. Consequently, instead of searching for an optimal functionx(t) over the space of all possible functions of time, one
searches for a coefficient vectorb which minimizes the cost function

Js(b) =
∫ tf

t0

G(bT d(t),bT ḋ(t), t) dt + F (bT d(tf),bT ḋ(tf), tf) (7)

4

whered(t) is a vector of basis functions. Thus, one can apply vector optimization algorithms such as sequential quadratic
programming (SQP), Newton–Gauss, or Levenberg–Marquardt to the problem. This technique is known as the direct
approach [24]. The primary conceptual difficulty in this approach is that one must find an approximation space whose
members all satisfy the system dynamic constraints (in other words, every member of the space must be a feasible trajec-
tory), because unlike the indirect approach, here the system dynamic constraints are not treated explicitly in the formulation
of the optimization problem. For rigid body systems, this happens to be fairly straightforward since rigid body systems are
a subset of Hamiltonian systems, and all trajectories with piecewise continuous acceleration profiles are feasible for such
systems. Since cubic splines and third-order Hermite splines have piecewise continuous second derivatives, all trajectories
parameterized by either of these spline families are feasible for rigid body systems. One must also restrict the search to
splines which satisfy the actuator constraints, either by finding a spline space whose members all satisfy these constraints
as well, by expressing these constraints as hard constraints on the optimization problem and using a solution technique
such as SQP which can solve problems with hard constraints, or by penalizing deviations from the actuator constraints via
soft constraints in the cost functional.

Although it is difficult to make any definitive statements about the performance of a particular algorithm for solving
optimal motion planning problems without defining the specific system and cost functional to which the algorithm is to be
applied, in general direct optimization techniques are felt to be more robust and faster than indirect techniques. Indirect
techniques are more flexible, however, because they can at least in principle be applied to nearly any system dynamics and
actuator constraints. Both approaches potentially suffer from the problems associated with nonlinear optimization routines.
Of these, the limitations of interest here are simply that nonlinear optimization techniques are computationally intensive,
and their convergence is typically sensitive to initial conditions. As a result, in the face of nonlinearities such as those
imposed by the presence of obstacles in the environment it is very challenging to develop optimal trajectory planners that
reliably generate results in the time frames required by most robotics problems. Indeed, Henshaw [5] recently proposed
an optimal trajectory planning algorithm for solving minimum-fuel orbital translation/rotation docking maneuvers. The
algorithm was capable of solving such problems but tended to require minutes to hours of computation time. Also, even
though Henshaw emphasized robustness in the design of his algorithm, the approach often required the assistance of a
human operator to find initial conditions which allowed the algorithm to converge.

As a result of the computational complexity and lack of robustness of optimal trajectory planners, Bellingham et al
[1], [19], [20] suggested the use of receding horizon planning for robotic trajectory planning problems. Receding horizon
planning (also known as model predictive control) [4], [15] has been used since the 1970’s, especially in the chemical
process industry, as a way to improve the speed of optimal control algorithms. Receding horizon planning is essentially
optimal planning except that the cost functional 3 is formulated over a limited time horizon(t, t + h) instead of(t0, tf) or
(t0,∞):

J [x(t), t] =
∫ t+h

t

G(x(t), ẋ(t), t) dt + E(x(t + h), ẋ(t + h), t + h) (8)

where, here, the terminal costF (·) has been dropped in favor of a cost-to-go estimateE(·) that is usually designed to
estimate the true cost-to-go

∫ tf

t+h
G(x(t), ẋ(t), t) dt + F (x(tf), ẋ(tf), tf). Operationally, the system does not usually

traverse the entire optimal path fromt to t + h; instead, a step sizeδ < h is chosen, the trajectory is traversed fromt to
t+δ, and the algorithm is repeated witht+δ as the newt0. Note that as the horizonh approachestf − t0, the performance
of the receding horizon algorithm approaches that of the previous optimal planner. Receding horizon planners are usually
faster than optimal planners because it generally becomes less computationally expensive to solve optimization problems
as the time period over which the optimization occurs becomes smaller. In additino, unlike an optimal planner, a receding
horizon planner is not required to calculate the entire trajectory before the system can begin to move; instead, only the step
[t, t + h] is required. As the trajectory from[t, t + δ] is being traversed, the planner can calculate future steps. As a result
of these two factors, receding horizon planners can allow the system to respond much more quickly than optimal planners.

Like an optimal planner, a receding horizon planner still needs to use an online numerical optimization routine in
order to minimize Equation 8. Bellingham uses Mixed Integer–Linear Programming (MILP), for which there are high
quality, fast, robust codes available. Unfortunately, however, MILP is limited to use with linear systems, and Bellingham’s
technique is therefore unfortunately inapplicable to many systems of interest, including robotic arms and spacecraft attitude
problems. To solve trajectory planning problems for nonlinear systems, a nonlinear optimization routine such as Newton–
Gauss, Sequential Quadratic Programming, or Levenberg–Marquardt must be used. As mentioned previously, providing
a rigorous convergence analysis for nonlinear optimization routines is very difficult. In fact, it is generally not possible to
even guarantee that the algorithm will converge at all from a given set of initial conditions. This is clearly an undesirable
characteristic for a real–time trajectory planner. MILP has a similar problem, in that although it is more robust than

5

nonlinear opimizers, like nonlinear optimization algorithms the time required to find a solution cannot be guaranteed.

4 Relationship between APFG and Optimal Motion Planning

At first glance, APFG and optimal motion planning appear to be disparate algorithms. APFG is strictly local: it takes into
account only the gradient of the potential field at a single point, does no searching, and does not appear to be optimizing
anything, either explicitly or implicitly. Optimal motion planning algorithms, on the other hand, are global and perform
explicit minimization of a cost functional. However, there is a framework whereby APFG and direct optimal motion
planning algorithms can be interpreted as merely the two extremes of receding horizon planning. It is widely recognized
that optimal planning and receding horizon planning are closely related, but the relationship between receding horizon
planning and APFG is apparently less widely appreciated.

To establish this framework, first note that without loss of generality that a cost functionalJ [·] may be written as

J [x(t), ẋ(t), t] = F (x(tf), ẋ(tf), tf) +
∫ tf

t0

G(x(t), ẋ(t), t) dt

= F (x(tf), ẋ(tf), tf) +
∫ t0+h

t0

G(x(t), ẋ(t), t) dt +
∫ tf

t0+h

G(x(t), ẋ(t), t) dt (9)

Now assuming thath is sufficiently small,h = δt, then the integrand of the first integral term can be replaced by its
truncated Taylor expansion:

J [x(t), ẋ(t), t] = F (x(tf), ẋ(tf), tf)

+
∫ t0+δt

t0

(
G(x(t0), ẋ(t0), t0) +

∂G

∂x

∣∣∣∣
x0

(x(t)− x(t0)) +
∂G

∂ẋ

∣∣∣∣
x0

(ẋ(t)− ẋ(t0)) +
∂G

∂t

∣∣∣∣
t0

(t− t0)

)
dt

+
∫ tf

t0+δt

G(x(t), ẋ(t), t) dt (10)

Now assume thatG(·) has no dependence onẋ(t) or t. Then,

J [x(t), ẋ(t), t] = F (x(tf), ẋ(tf), tf)

+
∫ t0+δt

t0

(
G(x(t0)) +

∂G

∂x

∣∣∣∣
x0

(x(t)− x(t0))

)
dt

+
∫ tf

t0+δt

G(x(t)) dt

= F (x(tf), ẋ(tf), tf)

+G(x(t0))δt−
∂G

∂x

∣∣∣∣
x0

x(t0)δt +
∂G

∂x

∣∣∣∣
x0

∫ t0+δt

t0

x(t)dt

+
∫ tf

t0+δt

G(x(t)) dt (11)

Finally, apply a trapezoidal integration scheme to approximate the value of the first integral term:

J [x(t), ẋ(t), t] = G(x(t0))δt−
δt

2
∂G

∂x

∣∣∣∣
x0

x(t0) +
δt

2
∂G

∂x

∣∣∣∣
x0

x(t0 + δt)

+
∫ tf

t0+δt

G(x(t)) dt + F (x(tf), ẋ(tf), tf) (12)

Now consider the problem of finding the position of the waypointx(t0 + δt) which minimizes Equation 12. First notice
that only the last three terms in Equation 12 depend onx(t0 + δt) (the dependence of the last term is indirect), so we may
without loss of generality consider minimizing

δt

2
∂G

∂x

∣∣∣∣
x0

x(t0 + δt) +
∫ tf

t0+δt

G(x(t)) dt + F (x(tf), ẋ(tf), tf) (13)

6

The first term may be interpreted as the immediate cost, since it depends only on the local gradient of the cost functional.
The other two terms may be interpreted as the true cost-to-goE[·]. If the cost-to-go terms are ignored, then it is clear
thatx(t0 + δt) must lie along− ∂G/x(t)|t0 in order to minimize the immediate cost. This is exactly how APFG chooses
the direction of the next waypoint. Thus, APFG may be interpreted as an algorithm which discounts any future cost and
attempts to minimize only the cost of the next step. Alternatively, it is equally valid to say that the APFG attractive potential
is a cost-to-go term,

E(x(t + δt), ẋ(t + δt), t + δt) = A(x(t + δ),xd)

so that APFG is in fact attempting to minimize a cost functional of the form

J [x(t), t] =
∫ t+δt

t

β
n∑

j=1

R(dist(x(t), cj)) dt + E(x(t + δt)).

Thus, an APFG planner can be seen as a receding horizon planner with a vanishingly small horizon.

5 Discussion

The insight that APFG can be interpreted as a receding horizon planner with a vanishingly small horizon immediately
suggests a method for adapting receding horizon planners for use in an anytime planning [3] framework. Anytime planning
is a generic term describing planning algorithms that can provide a solution that satisfies a minimal set of requirements
within a short, known timeframe, and then improves on that solution for however much time is available. Notably, a valid
solution is always available after the minimum initial planning time. As a consequence, anytime planners are very suitable
for real–time applications.

There are two challenges to applying anytime planning ideas to a receding horizon planner. First, a hard guarantee
is required for the maximum amount of time before which a minimally satisfactory trajectory is available. Second, there
must be a way of iteratively improving the solution while guaranteeing that a valid solution is always available. Both of
these challenges can be solved for a receding horizon trajectory planner by starting with a very small planning horizon.
This allows the first planning iteration to proceed using APFG, which in turn provides an absolute maximum computation
time guarantee. The succeeding iterations then proceed using the standard receding horizon planner, with the planning
horizon increasing at each iteration. The results from the previous iteration are always available, thus satisfying the second
challenge. This scheme should scale gracefully with time: when the available computation time is short, the planner is
guaranteed to provide results at least as good as an APFG planner. As available computation time increases, the results
approach those provided by a true end-to-end optimal planner. This second point is an important benefit of anytime
planning: instead of sitting idle after the required computations are completed, an anytime planner utilizes the remaining
time to improve the quality of the solution. Thus, an anytime planner will certainly guarantee real–time execution, and
may, depending on the specifics of the problem at hand, return better results than a standard receding horizon planner.

6 Preliminary Experimental Results

6.1 Planar holonomic navigation in a cluttered environment

As a first step to validating the ideas of the previous section, an experiment was designed to compare the performance of
APFG and of optimal motion planning with a receding horizon planner. The problem domain entails a holonomic robot
moving in a two-dimensional square room with four walls and dimensions of1.2 × 1.2. Ten circular obstacles, two of
diameter 0.142, five of diameter 0.1, and three of diameter 0.05, are placed randomly within the room such that there is a
minimum distance of at least 0.08 between each other and from the walls. The robot is required to begin in the lower-left
hand corner of the room,x0 = (0, 0), and travel to the upper-right hand corner,xf = (1, 1) while avoiding collisions with
the walls and the circular obstacles. The initial time ist0 = 0 and the final time istf = 10.

The cost functional used for the optimal trajectory planner is:

J [x(t)] =
∫ tf

t0

ẍ(t)T ẍ(t) + β
n∑

j=0

m∑
k=0

R(dist(bk, cj , tk, tk+1)) dt (14)

7

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Piecewise cubic obstacle penalty function,R(·), with k = 1 anddn = 1.

whereR(·) is here defined as a piecewise cubic:

R(d) =
{

k ·
(
a1(d/dn)3 + a2(d/dn)2 + a3(d/dn) + a4

)
d < dn

0 else.

Here,d is the distance from the robot to an obstacle,dn is the distance over whichR(·) has nonzero support, andk is the
penalty atd = 0. The constantsa1, a2, a3, anda4 are chosen so thatR(0) = 1, R(dn) = 0, Ṙ(dn) = 0, andR̈(dn) = 0.
The last two constraints are important to ensure that the smoothness requirements of the vector minimization algorithm are
met. The distance function is defined as

dist(b, c, tk, tk+1) = min
t∈(tk,tk+1)

min
y∈c

‖x(t)− y‖.

i.e. it returns the minimum Euclidean distance between the obstacle and the path between knotstk andtk+1 whereb is
the vector of weights that definesx(t) on the interval(tk, tk+1). With the circular objects the distance was calculated from
the obstacle center. This is necessary because with nonlinear minimization problems, intermediate estimates of the optimal
path are not guaranteed to be collision free, and in order for the minimization algorithm to proceed the cost functional and
its gradient must be well defined in such a case. Therefore,dist(·) must be defined for points inside the boundary of an
obstacle. Defining the distance as zero at the center of the obstacle is one way to accomplish this.

The support lengthdn was chosen to be 0.05 plus the obstacle diameter. The penalty function height termk was chosen
so thatR(·) = 1 at the obstacle boundary. The weight penalty termβ was chosen as 4.5.

The direct method was used to solve this optimization problem. The true optimum pathx∗(t) was approximated
with a fourteen knot third-order Hermite spline. The knots were uniformly distributed betweent0 and tf . The vec-
tor minimization algorithm chosen was the Broyden-Fletcher-Goldfarb-Shanno routine of the Gnu Scientific Library
(http://www.gnu.org/software/gsl/). BFGS is a quasi-Newton algorithm that internally estimates the Hessian matrix. Be-
cause even the first derivative ofJ [·] is difficult to derive symbolically, it was estimated numerically.

For the APFG planner the potential function was:

J [x(t)] = A(x(t),xf) + β
n∑

i=0

R(dist(x(t), ci)) (15)

whereA(·), the attractive potential term, is defined as:

d = ‖x− xf‖

A(x,xf) =
{

d if d > ε
1
2εd

2 + ε/2 else.

A graph of this function is shown if Figure 2. This attractive term is used in lieu of the more common quadratic term shown
in Equation 2 in order to minimize the size of the initial velocity spike discussed in Section 2. This form also allows the

8

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

Figure 2: APFG planner attractive potential term.

planner to take steps of constant length in the absence of obstacles except in the immediate vicinity of the goal; a quadratic
term leads to longer steps as the distance from the goal increases, which essentially means that the obstacle avoidance term
becomes is discounted far from the goal.

The constantsβ, dn, andk were set to the same values as for the optimal trajectory planner. Given waypointx(ti), the
succeeding waypointx(ti + δt) = x(ti+1) was chosen as

x(ti + δt) = x(ti)− γ
∂J

∂x(ti)

∣∣∣∣
x(ti)

At each waypoint, the velocity to be achieved was

vi = (xi − xi−1)/δt

except for the initial and final states, wherev0 = 0 andvf = 0. The trajectory was parameterized as a third-order Hermite
spline with knots at eachti and the cost was evaluated using Equation 14.

Finally, for the limited-horizon planner the cost functional used was

J [x(t)] =
∫ t+h

t

ẍ(t)T ẍ(t) + β

n∑
i=0

m∑
j=0

R(dist(bj , ci, tj , tj+1)) dt +
∫ tf

t+h

ẍ(t)T ẍ(t) dt (16)

whereh = 1.5. As in the other two cases, third-order Hermite splines were used to parameterize the trajectoryx(t); in
this case, the spline has two knots, atti andti+1 = t + h. Since the positionsx(ti) andx(tf) are fixed, the only degrees
of freedom for the optimization routine to vary are the weights associated with the second knot. Following each iteration,
a step of 1 time unit was taken along the spline, and the new optimization was started at this point.

Ten different configurations of obstacles were randomly generated; a sample configuration is shown in Figure 3. The
resulting trajectories were all evaluated according to equation 14. Data was collected on a 1.25 GHz G4 computer. The
trajectory costs and computational times for the three trajectory planners are shown in Figure 4.

Notice that the receding horizon planner does in fact represent an intermediate step between APFG and optimal motion
planning. Its execution time compares favorably with the APFG planner, while the quality of the trajectories it finds are
close to those of the optimal trajectory planner.

Notice that in one case, Example 6, the cost of the trajectory found by the receding horizon planner is actually lower
than that of the optimal motion planner. This is an example of the inability of nonlinear optimization routines to converge
to a global minimum discussed in the Section 3. Examination of the two trajectories shows that the optimal motion planner
takes a significantly different route through the obstacle field than the receding horizon planner does; in this case, the
receding horizon planner happens to find a trajectory that is much closer to the global minimum.

It is also worth mentioning that the data illustrates one of the limitations of nonlinear optimization routines discussed in
Section 3. Occasionally, the receding horizon trajectory planner encountered a case where the gradient norm convergence
criterion failed to accurately detect convergence. The iteration terminated when it was unable to improve on the trajectory
cost. As mentioned, this causes the iteration to take longer than is strictly necessary, but does not indicate a failure to

9

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 3: Typical experimental configuration.

Optimal APFG Receding Horizon
Cost Time Cost Time Cost Time

Example 1 0.150 91.41 5.579 0.24 0.539 2.48
Example 2 0.203 196.94 4.667 0.29 0.330 1.88
Example 3 0.066 64.82 4.896 0.19 0.180 1.39
Example 4 0.060 77.11 5.352 0.25 0.284 1.98
Example 5 0.158 171.09 5.198 0.32 0.281 2.98
Example 6 0.161 230.65 5.166 0.27 0.075 0.41
Example 7 0.153 246.18 5.004 0.21 0.174 0.63
Example 8 0.134 253.61 5.314 0.31 0.241 0.94
Example 9 0.342 391.4 4.548 0.24 0.156 0.91
Example 10 0.076 194.38 4.063 0.29 0.214 1.72

Average 0.1503± 0.0822 191.759± 98.852 4.9787± 0.4502 0.261± 0.043 0.2474± 0.1263 1.532± 0.829

Figure 4: Experimental results comparing the performance of the optimal, APFG, and receding horizon planners. All times
are in seconds.

10

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 5: Results for Example #4; from left to right, APFG, optimal motion planner, and receding horizon planner.

converge; the trajectory returned by the planner is still useable. Even in the face of such problems, however, the receding
horizon planner still runs relatively quickly.

6.2 Orbital robotic grapple

Next, the receding horizon planning was applied to a more realistic problem: grappling a disabled satellite using a robotic
manipulator. Robotic arm trajectory planning is extremely difficult for several reasons: robot arms possess both nonlinear
kinematics and dynamics, including significant singularities and joint limitations; robot arms have a complex shape, and
are often used in cluttered environments near objects with complex shapes, making distance calculations expensive; and
robot arms have many degrees of freedom, so the trajectory planner must operate in a space of six or more dimensions.

The results presented here entail grappling a docking point located on the aft end of a generic satellite, shown in Figure
6. Notice that the satellite has a sun shade surrounding the workspace, and that the grapple fixture is located approximately
6 cm. from the shade. In addition, a rocket nozzle and various other pieces of equipment are present. The robot arm,
shown in Figure 7 is modelled on a Mitsubishi Heavy Industries PA-10/7C, a common 7 degree–of–freedom industrial
manipulator. The cost functional used here was:

J [θ(t)] =
∫ t+h

t

θ̈(t)T θ̈(t)+β
n∑

i=0

R(dist(θ(t+h), ci)) dt+
∫ tf

t+h

θ̈(t)T θ̈(t) dt+‖x(θ(tf))−xd‖+
n∑

i=0

R(dist(θ(tf), ci))

(17)
where, here,θ(t) is a vector of joint angles,x(θ) represents the cartesian coordinates of the end effector given joint angles
θ, andxd represents the desired final end effector cartesian position and pose. Notice that two additional terms have been
added to the cost–to–go estimate: a term that penalizes deviations from the desired final end effector position and pose, and
a term that penalizes obstacle distance at the final position. For this problem, the final arm positionθ(tf) was not fixed;
instead, these two terms were used allow the trajectory planner to use the extra degree of freedom of the robot arm to fulfill
the required final conditions while maximizing obstacle distances. For this application the arrival timetf was 30 seconds;
the horizonh was 6 seconds and the step sizeδ was 3 seconds.

Distance calculation for this example is considerably more complicated and computationally expensive than the previ-
ous example. To reduce the computation time, instead of attempting to find the minimum distance between the robot and
the obstacles anywhere in the interval(t, t + h) as in the previous example, here distance was calculated only att + h.
Thus, in a slight abuse of notation, the distance functionR(θ(t), c) here is defined as the instantaneous distance between
the robot arm with joint anglesθ and obstaclec.

Ten total trials with varying relative cartesian positions were conducted. The relative positions, which were measured
from the base of the robot arm to the base of the rocket nozzle on the target, were in the rangex ∈ [0.915, 1.215],
y ∈ [0.23, 0.29], z ∈ [0.23, 0.29] meters. Data was collected on a 1.8 GHz dual processor G5 computer. An example
trajectory with a relative pose of[0.965, 0.27, 0.27] meters is shown in Figure 8. The average time to calculate a step was
0.88 ± 0.57 seconds. The maximum time was 3.78 seconds. Note that, because on average the step sizes are larger than
the calculation time required to compute them, the time step the planner is calculating may be significantly ahead of the

11

Figure 6: Satellite target for robotic arm grapple. Grapple fixture is in upper left corner of target. Target is approximately
1.83 meters (6 feet) in diameter; sunshade is approximately 1.22 meters (4 feet) deep.

Figure 7: Robotic satellite servicer

12

Figure 8: Successful robotic arm grapple. Images shown at approximately 2.75 second intervals.

13

actual elapsed time. Thus, having an individual step that takes longer than the step lengthδ to calculate does not necessarily
indicate that the planner has exceeded its allotted calculation time. However, if the planner is not far enough ahead of the
actual elapsed time, itmayexceed the allotted time. Thus, while the receding horizon planner does on average satisfy the
real time requirements of this particular task, the fact that it took longer than the allocated time to calculate for one iteration
reinforces the need for the anytime planner discussed in Section 5.

7 Conclusions

The results shown here indicate that receding horizon trajectory planning represents an improvement over both optimal
motion planning and APFG in that it allows the use of cost functional optimization, with its attendant flexibility, in a real–
time setting. The first experimental setup is very similar to one of the most common robot motion planning problems, that
of finding trajectories through a room or hallway, and the results show that receding horizon motion planning is capable
of solving this problem quickly and of returning trajectories of much higher quality than APFG. The second experimental
setup is an extremely challenging, realistic problem of current interest; the receding horizon planner was shown to be
capably of ably solving this problem in real time using a current desktop–class computer.

There are several areas of future work which require investigation. First, as discussed earlier, nonlinear receding horizon
planners do not satisfy hard real–time constraints. Implementing the anytime planner discussed in Section 5 constitutes
the bulk of our current work. This is necessary to formally fulfill hard real–time constraints, and as was indicated by the
maximum computation time in the second example, this problem is not merely a formal nicety.

There are several related topics which require more investigation. As mentioned in Section 2, APFG planners are
susceptible to being caught in local minima of the potential field and never reaching the goal state. This is a result of their
local nature. Receding horizon planners are not entirely local – they utilize information about the cost functional at some
distance from the current step into account – but they are not entirely global either. As a result, they may be susceptible
to the same problem, although probably not to the same degree. Work on characterizing the receding horizon planner’s
behavior regarding this problem is ongoing.

Reducing the difficulty of designing cost functionals is also an area deserving consideration. It is not always easy to
design cost functional that results in reasonable performance. One possible approach to alleviating this problem might be
to use on offline optimization routine such as genetic algorithms to automate the cost functional design process. A related
problem is that of designing a cost–to–go estimate that is computationally inexpensive to compute but leads to optimal or
nearly optimal trajectories. It may also be possible to design a cost–to–go estimate that alleviates the local minima problem
discussed above.

Motion planning in the face of complex dynamics and kinematics, cluttered environments and moving obstacles and
targets remains a very difficult problem. It will likely never be fully solved in its most general form. Hopefully, the
technique presented here constitutes a step forward in motion planning capabilities, and will enable solutions to problems
of current interest that are not current tractable.

References

[1] John Bellingham, Arthur Richards, and Jonathan P. How. Receding horizon control of autonomous aerial vehicles.
In Proceedings of the 2002 American Control Conference, Anchorage, AK, USA, May 2002.

[2] Christopher I. Connelly. Harmonic functions and collision probabilities. InProceedings of the 1994 IEEE Conference
on Robotics and Auomation, San Diego, CA, 1994.

[3] T. L. Dean and M. Boddy. An analysis of time–dependent planning. InProceedings of the Seventh National Confer-
ence on Artificial Intelligence, pages 49–54, Minneapolis, Minnesota, 1988.

[4] Rolf Findeisen and Frank Allgower. n introduction to nonlinear model predictive control. In21st Benelux Meeting
on Systems and Control, Veldhoven, 2002.

[5] Carl Glen Henshaw.A Variational Technique for Spacecraft Trajectory Planning. PhD thesis, University of Maryland,
College Park, Maryland, 2003.

[6] O. Khatib. Commande Dynamique dans l’Espace Opérationnel des Robots Manipulateurs en Présence d’Obstacles.
PhD thesis, Ecole Nationale Supérieure de l’Áeronautique et de l’Espace, Toulouse, 1980.

14

[7] O. Khatib. Real time obstacle avoidance for manipulators and mobile robots.International Journal of Robotics
Research, 5(1), Spring 1986.

[8] Jin-Oh Kim and Pradeep K. Khosla. Real–time obstacle avoidance using harmonic potential functions.IEEE Trans-
actions on Robotics and Automation, 8(3), June 1992.

[9] Donald E. Kirk.Optimal Control Theory: An Introduction. Prentice–Hall, 1970.

[10] R. Lampariello, S. Agrawal, and G Hirzinger. Optimal motion planning for free-flying robots. InProceedings of the
2003 International Conference on Robotics and Automation, Taiwan, 2003.

[11] Jean-Claude Latombe.Robot Motion Planning. Kluwer Academic Publishers, 1991.

[12] Colin R. McInnes. Autonomous path planning for on–orbit servicing vehicles. InReducing Space Mission Cost.
British Interplanetary Society, April 1999.

[13] F. McQuade and C. R. McInnes. Autonomous control for on–orbit assembly using potential function methods.The
Aeronautical Journal, pages 255–262, June/July 1997.

[14] Mark B. Milam, Kudah Mushambi, and Richard M. Murray. A new computational approach to real–time trajec-
tory generation for constrained mechanical systems. InProceedings of the 2000 IEEE Conference on Decision and
Control, 2000.

[15] James B. Rawlings. Tutorial overview of model predictive control.IEEE Control Systems Magazine, pages 38–52,
June 2000.

[16] Arthur Richards, Tom Schouwenaars, Jonathan P. How, and Eric Feron. Spacecraft trajectory planning with collision
and plume avoidance using mixed–integer linear programming.Accepted, AIAA Journal of Guidance, Control and
Dynamics, July 2002.

[17] Elan Rimon and Daniel E. Koditschek. Exact robot navigation using artificial potential functions.IEEE Transactions
on Robotics and Automation, 8(5), October 1992.

[18] Alexander B. Roger and Colin R. McInnes. Safety constrained free–flyer path planning at the international space
station.Journal of Guidance, Control, and Dynamics, 23(6):971–979, November–December 2000.

[19] T. Schouwenaars, E. Feron, and J. How. Safe receeding horizon path planning for autonomous vehicles. In40th
Allerton Conference on Communication, Control and Computing, October 2002.

[20] T. Schouwenaars, J. How, and E. Feron. Receding horizon path planning with implicit safety guarantees. InProceed-
ings of the 2004 American Control Conference, Boston, MA, USA, July 2004.

[21] Ronald J. Simmons, Edward V. Bergmann, Bruce A. Persson, and Walter M. Hollister. Six dimensional trajectory
solver for autonomous proximity operations. InProceedings of the AIAA Guidance, Navigation and Control Confer-
ence, pages 1291–1303. American Institute of Aeronautics and Astronautics, 1990. AIAA paper 90–3459.

[22] Kimon P. Valavanis, Timothy Hebert, Ramesh Kolluru, and Nikos Tsourveloudis. Mobile robot navigation in 2-d
dynamic environments using an electrostatic potential field.IEEE Transactions on Systems, Man, and Cybernetics
–Part A: Systems and Humans, 30(2), March 2000.

[23] Michiel J. Van Nieuwstadt and Richard M. Murray. Real time trajectory generation for differentially flat systems.
Division of Engineering and Applied Science, California Institute of Technology. Submitted, International Journal of
Robust and Nonlinear Control, May 1997.

[24] Oscar von Stryk. Numerical solution of optimal control problems by direct collocation. In R. Bulirsch, A. Miele,
J. Stoer, and K.-H. Well, editors,Optimal control — Calculus of Variations, Optimal Control Theory and Numerical
Methods, number 111 in International Series of Numerical Mathematics. Birkhauser, Basel, 1993.

15

